Literatur zum Artikel
Künstliche Intelligenz in der Gefäßchirurgie

1. Chang Y (2019) Improving the Otsu method for MRA image vessel ex-
traction via resampling and ensemble learning. Healthc Technol Lett
6: 115–120
local scale parameters: applications to spectral and elevation data.
Remote Sens 10: 2024
for coronary angiography. BioData Min 15: 27
ment of vascular distensibility based on edge detection and speckle
tracking using ultrasound Dicom data. ASAIO J 68: 112–121
5. Preim B, Botha C (2014) Image analysis for medical visualization: In:
Visual computing for medicine, Morgan Kaufmann, San Francisco (USA),
S 111–175
cal navigation. Doctoral thesis at NTNU, S 236. (http://hdl.handle.
net/11250/2359703)
and vessel contour segmentation in intravascular ultrasound data-
sets. Med Image Anal 75: 102626
media thickness and plaque area measurement in ultrasound for car-
diovascular/stroke risk monitoring: artificial intelligence framework. J
Digit Imaging 34: 581–604.
9. Center for Devices and Radiological Health. Artificial intelligence and
machine learning (AI/ML)-enabled medical devices. U.S. Food and
Drug Administration, https://www.fda.gov/medical-devices/software
medical-device-samd/artificial-intelligence-and-machine-learning
10. Viz.ai™ announces positive new data from large aortic dissection AI
Viz.ai%E2%84%A2-Announces-Positive-New-Data-From-Large-Aortic
Dissection-AI-Real-World-Study-at-the-2022-VEITHsymposium
%E2%84%A2
WP81: validation of artificial intelligence to limit delays in acute stroke
treatment and endovascular therapy (VALIDATE). Stroke 54: AWP81
human factors skills for healthcare instrument: a valid and reliable
tool for assessing interprofessional learning across healthcare practi-
cion settings. Simul Technol Enhanc Learn 3: 135-141